at a
at Tr =
r) R =

= * diffuse
= true;

fl + refr)) &

), N )
efl * E * diffuse
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\AXDEPTH)

survive = SurvivalProbabi
estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2( directPdf, brdf
ot cosThetaOut = dot( N, L

E * ((weight * cosThetaOut) di

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse( diffuse, N

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:
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at a = nt
at Tr = 1
r) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doi £

if;

~adiance = SamplelLight( &ranc
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / direc

andom walk - done properly,
rive)

3t3 brdf = SampleDiffuse( diffuse, N,

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:
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at a =
at Tr
r) R

= * diffuse:
= true;

fl + refr))

), N )
efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

"adiance = SampleLight( &ra
2.x + radiance.y + radian

e.z

v = true;

st brdfPdf = EvaluateDiffuse( L. |
at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdf
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / dir

andom walk - done properly, clos
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

on = true:
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Last Time

1<

), N

3)

at a = nt

at Tr = 1
't) R = (D

= * diffuse:
= true;

:fl + refr)) 22 (de

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing it

if;

~adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Towards Noise-free Path Tracing

“Work smarter, not harder”: generate better samples / send rays
where they matter.

Extreme case: ReSTIR, which spends a lot of effort on deciding
where to send a shadow ray.



3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

on = true:

“Rearchitecting Spatiotemporal Resampling for Production’

)
)

Wyman & Panteleev, 2021.
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Last Time

We tried everything

...But with an 8spp budget, it’s still noisy.

» There is somewhat uniform noise left
B e, » ‘Fireflies’ indicate presence of ‘improbable paths’.

it Tr =1 - (RO
'r) R = (D * nnt

= * diffuse;
= true;
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Last Time
We tried everything
: Caepth ...But with an 8spp budget, it’s still noisy.
) o = There is somewhat uniform noise left
£a ot e, » ‘Fireflies’ indicate presence of ‘improbable paths’.

at Tr =1 - (RO
r) R = (D * nnt

= * diffuse;
= true;
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Last Time

Suppressing Fireflies

“A firefly is easily recognized in the final image: it is a pixel with a value
that differs significantly from its neighbors.”

1<
), N
3)

tn o » [s this always true?

™R = (0 = How to fix it?

= * diffuse: .

- true; = [s that still correct?

;fl + refr)) &% (de

A1 Ve ¢ gittuse Firefly suppression introduces bias in our estimator.

e = Spread out the removed energy over the image / neighborhood
e = Just wait it out (additional samples will improve the average) ANT“OLO(Glggg Tjﬁ)iﬁ““”c’ -
~adiance = SampleLight( &rand . N 0 o

e = Do some adaptive sampling (detect high variance)

i e = Justacceptit.

it weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );
E * ((weight * cosThetaOut) / direc

.
andom walk - done properly, cl m
.

rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl

irvive;
pdf; X 31))7
1 = E * brdf * (dot( N, R ) / pdf): Uyl

-ion = true:
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Last Time

Suppressing Fireflies

S O AN V7
oW CAYN Yer: A
@@iﬂf WOW N3Oy (g\?@z/

“A firefly is easily recognized in the final image: it is a pixel with a value
that differs significantly from its neighbors.”

. Better approach: clamp™.

at Tr = 1
't) R = (D

= * diffuse:

- e.g., in Lighthouse 2:
;fl + refr)) &% (deg

, N ); #define CLAMPINTENSITY( E ) \

e if (dot( E, E ) > 25) E = 5 * normalize( E );
\AXDEPTH)

survive = SurvivalProbabil
estimation - doing it

if;

~adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

ANTHOLOGY OF THE STRING BAss
(1925 - 1941)

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
rive)

5 braf = samprevifuse( aisruse, 1. o *1 The Iray Light Transport Simulation and Rendering System, Section 5.5. Keller et al., 2017. % 4'
5

irvive;
pdf; X 31))7
1 = E * brdf * (dot( N, R ) / pdf): Uyl

-ion = true:
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Last Time

> TS

2 (depth «

= = dnside * 1
it-= nt /inc, ddi
1St =-1.6f - nnt
), N )5

- SurvivalProbability oif
imation - doing it propscly.

smpleLight( &rand, I, &L

+ radiance.y + radiance.z) - @) -

t3 brdf '=*SallpIeDiffuse( diffuse, N, rl, r2, &R,
rvive;

1 = E * brdf * (dot( N, R ) / pdf);
-30n = true: : “ I




at a = nt
at Tr = 1
'r) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing it

if;

-adiance = Samplelight( &ranc
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut) / direc

andom walk - done properly,
rive)

3t3 brdf = SampleDiffuse( diffuse, N,

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Today's Agenda:

Noise
Ingredients

Future Work
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Reducing the Problem - Filtering
Core idea:
Exploit the fact that illumination is typically low-frequent:
Nearby pixels tend to converge to similar values, so we should
s be able to use information gathered for one pixel to improve
- ditruse the estimate of the next.
;fl + refr)) & . a . g
e Essentially, we are increasing the number of samples per pixel,
s T by including the neighbors.
1AXDEPTH)
;:z\tfi\;:t;iutvi—valp"::Lwa‘: il N Ote :
if;
~adiance = SampleLight; i . ] ]
S Unless neighboring pixels actually converge to
 brfPdf ~ Evaluatepiffuse( | the same value, filtering introduces bias.
s e
E * ((weight * cosThetaOut)
i o - s o Filtering thus trades variance for bias. m}
rive ;(?,
; brdf = leDiff i 5 | E j
at3' r. = SampleDiffuse( diffuse, N \\’\ V)
e \"4 % \/

H
1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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Ingredients

kernels

), N
))
at a = nt

at Tr = 1
) R =/(D

= * diffuse:
= true;

fl + refr)) 22 (d

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing

if;

~adiance = SampleLight( &ra
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / direc

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse( diffuse, N, ri

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Filter kernels

For the actual filtering, we apply a kernel.

Pixel FilteredValue( iy, iy, halfWidth ) X ZjENi CjW(i,j)

sum = 0 Ci = T
summedWeight = 0 Zje]\riw(l'])
for j, = i, - halfWidth to i, + halfWidth
for j, = i, - halfWidth to i, + halfWidth
sum += ReadPixel( jy, j, ) * weight( j., Jj, )
summedWeight += weight( jy, jy )

return sum /summedWeight

/4.
SN
\nv Y
\z'ZA—lAz,)))y
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Ingredients

Filter kernels

e e For the actual filtering, we apply a kernel.

i Pixel FilteredValue( iy, iy, halfWidth ) = Zje]\fi CjW(i,j)
o - e e sum = 0 C; = =
S summec{Weight =0 | Zje]\fiW(l;])

= 1y

fl + refr)) 22

), N ); -
el E-%diff
= true;

\AXDEPTH)

survive = Survivess
estimation - dois
if; -
-adiance = Sampl&Hy
2.x + radiance. y

v = true; ‘_3

it brdfPdf = Evaalss . , IR 3

it3 factor = diff e e TN g

it weight = Mis B Ay ""3"' ; } A 5
3 : s

it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directPd:

andom walk - done properly, clofe

rive)

1
;at3 brdf = SampleDiffuse( diffufe, N, r1, = 5 22

i, 0 0 O 1 1 1 1 3 1

1=E*brdf*(dot( N, R ) / pdf);

-ion = true:
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Ingredients

kernels

at a
at Tr
'r) R = (D

* diffuse
= true;

fl + refr))

), N )
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProba
estimation d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2( directPdf, brdf
at cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut

andom walk - done proper
rive)

3t3 brdf = SampleDiffuse( diffuse, N

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);:
-ion = true:

Filter kernels
For the actual filtering, we apply a kernel.

Pixel FilteredValue( iy, i,, halfWidth )
sum = 0
summedWeight = 0
for j, = iy, - halfWidth to i, + halfWidth
for j, =i, - halfWidth to i, + halfWidth
sum += ReadPixel( jy, j, ) * weight( j., Jj, )
summedWeight += weight( jy, jy )
return sum /summedWeight

Here, weight or w is the weight function. We could simply use the Gaussian kernel:

2
w(i,j) = exp (%), where p; and p; are screen space positions and gy is
¢ the spatial standard deviation of the Gaussian kernel.

10-10

SS\T[R2
A
siply

Y
‘Z:I,'Aﬂl)/
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Ingredients

Filter kernels
Reitels A Gaussian filter (as well as other low-pass filters) blurs out
high frequency details.

s We can improve on this using a non-linear bilateral filter*.

at Tr = X
r) R = (D A 1(L_]“

* diffuse
= true;

_ I 01 e = ¢I”
f;):ef..‘ . w(i,j) = exp 20_6% X exp 20,?

efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalPre

estima

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

it brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI

at weight = Mis2( directPdf, brdf
at cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut)

10-10

andom walk - done properl
rive)

;t3 brdf = SampleDiffuse( diffuse, N 1 ] . . . . .

: *: Tomasi & Manduchi, Bilateral filtering for gray and color images. ICCV "98. %
1p= E * brdf * (dot( N, R ) / pdf); “Z»L- 2>
-ion = true:
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Filter kernels
kernels : : : :

The bilateral filter takes the color of nearby pixels into account. We can
take this further, by taking an arbitrary set of features into account.

e The cross bilateral filter*:

= * diffuse

= true; 2 K 2

| - —|lp: = »)| |l fiei = fios

fl + refr)) & W(l,]) — exp 2 x eXp 2

), N ); Zo-d ZO'k

efl * E * diffuse k=1

{AXDEPTH) .

P R Here, f} ; is the k’th feature vector at pixel i and oy, is the bandwidth parameter for feature k.

i:?th‘a‘:lcﬂ - a0l

"adiance = Samplelight

2.x + radiance.y + radiance . .

Note that we can use noise-free features to smooth noisy features.

S e Example of a low-noise feature: normals at the primary intersection point.

at weight = Mis2( directPdf, brdfr . . . . . . . . . .

T L T Example of a noisy feature: indirect illumination at the primary intersection point.

andom walk - done properl /,m

rive) /

;at3 brdf = SampleDiffuse( diffuse, N 1

rvive; *. : . . . : .

o : Eisemann & Durand. Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 3 (Aug. 2004).
1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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Ingredients

Filter kernels, digest

sl Filtering adds samples to a pixel by ‘borrowing’ them from neighbors.
Filtering trades variance for bias.
oo We can improve the quality of the borrowed samples using a weight:
e * Further away = less relevant
ey ai = Different normal, different material, ... = less relevant
e diffuse
. Some considerations:
1AXDEPTH)

survive = SurvivalProbabil

L = Should we take accumulated or individual samples from neighbors?
~adiance = SampleLight( &ra . . .
e T = Depth of field and AA seriously affect our options.

it brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut)

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse( diffuse, N, r
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:
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Ingredients

kernels

1T

.~

3) N
A split
at Tr = 1

'r) R = (D

= * diffuse:
= true;

fl + refr)) && (de

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing it

if;

~adiance = SamplelLight( &ranc
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, ri

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

) =

Indirect illumination as a feature:
A path tracer allows us to conveniently split
direct from indirect, and bounce 1 from bounce 2.

Jal s : hot

Separating illumination into layers allows us to
filter each layer separately. This prevents bleeding,

and allows for layer-specific kernel sizes. S o \%?\i
We can also separate albedo from illumination. E"a » $
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Ingredients

Separating albedo from illumination

kernels

1t = nt

352t = 1

), N );

) .
split

at a = T =

at Tr = 1 - (R€

'r) R = (D

= * diffuse:

= true;

fl + refr)) && (dept
), N )

efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight( &rand o o o - n

D radtancey + radiance. Adding this separation to an existing renderer:

v = true;

at brdfPdf = EvaluateDiffuse( L. I . . . . .

e s - wen @ store albedo at the primary intersection (simple material property);

it cosThetaOut = dot( N, L );

£ Sliweigne - womerione, ™ @t the end of the pipeline: illumination = sample / max( epsilon, albedo ).

andom walk - done properly, close
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl,
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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Ingredients

Reprojection

kernels .
S Core idea:

) In an animation, samples taken for the previous frame are meaningful for the
2 split current frame. We can supply the filter with more data by looking back in time.

at Tr =1 - (RO 4
r) R = (D * nnt

» Camera parameters

= * difTuse;
= true;

- . ad temporal

), N )
~efl * E * diffuse;
= true;

\AXDEPTH)

survive = SurvivalProbability @
estimation - doing it prope

if;

-adiance = SampleLight( &rand, 1, -
2.x + radiance.y + radiance.z)

v = true;

3t brdfPdf = EvaluateDiffuse( L. 11

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfPdf |
at cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directPds

andom walk - done properly, closely |
rive)

]

3t3 brdf = SampleDiffuse( diffuse, N, r1, - =
rvive; ¥
pdf;

1 = E * brdf * (dot( N, R ) / pdf):

-i0n = true:
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Ingredients

kernels

AAXDEPTH)

survive = SurvivalProbabil
estimation - doi

if;

~adiance = SampleLight( &ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / direc

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse( diffuse, N, r

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Reprojection

Core idea:

https://www.shadertoy.com/view/IdtGWI

In an animation, samples taken for the previous frame are meaningful for the
current frame. We can supply the filter with more data by looking back in time.

Problem: in an animation, the camera and/or the geometry moves. We need to find
the location of a pixel in the previous frame(s).

Solution: use the camera matrices.

Xworld Xscreen Xscreen Xworld
M Yworid | — | Yscreen 9 M—l Yscreen | _ | Yworld
x4\ 7 |\ z 4x4\ 7z |z
world screen screen world
1 1 1 1
(finally, apply the matrix of the previous frame to obtain the screen location in the PR

previous frame.) é’ — 2
> <


https://www.shadertoy.com/view/ldtGWl
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Reprojection
kernels . : :
Reprojection using camera matrices:
= fails if we have animation
? split = will not work with depth of field
=  will not work with speculars.
A recent paper proposes an alternative*:
temporal Paper prop
diffuse . .. . . . . . . .
For each pixel (i,j), find the shift to similar pixels in the neighborhood by
- comparing a small patch of pixels around (i,j) to pixels at some distance.
survive = SurvivalProbabil
’:jtirraticn - do . . . . 5 . 5
Shases Note: this idea is not new, but the paper makes it efficient using a
e hierarchical process, where down-sampled versions of the image are
- wetgnt = wis2( atrectput, brdts used to increase the size of the search window.
’: So?{:z;;ﬁ:t*=ci:;ée:;ottil -
andom walk - done properly /,m
rive) ;é-. .AA
s brd - Samplepiffuse( difrue, 1, o 1 Fast Temporal Reprojection without Motion Vectors. Hanika & Tessari, 2021. E 9
JrviYe; =
1pgfé * brdf * (dot( N, R ) / pdf); e Zhl,-,ﬁl))y

-ion = true:
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Ingredients

Caching in world space

kernels : . : :
Instead of searching the current pixel in the previous frame in screen
space, we can also maintain a cache in world space*.
: split Path space filtering:
- o = Store information in a 3D grid
= Map the grid cells to a hash map
e temporal _
. = Update grid cells for each vertex
efl * E * diffuse . =
- true; that ‘visits’ it
AAXDEPTH)
i : A . . . 1k hy%s
R Note that a single cell may still receive L
if; . . . .
s S shading information for surfaces with
different normals.
it brdfPdf = EvaluateDiffuse
::3w:zcﬁzr==f4‘iji:fu::r;ci:;\;i% brdf ‘ R coﬁ‘b‘ A . <ol B er™ o (0
e 5°f:§§§(ﬁitfc§§é$;o;t rmm— et 08 v_;“‘;,‘\}' o) DI e L e

andom walk - done proper
rive)

*: Binder et al., Massively Parallel Path Space Filtering, 2019.

3t3 brdf = SampleDiffuse( diffuse, N
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);:
-ion = true:
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Ingredients

kernels

split

temporal

"adiance = Samplelight
2.x + radiance.y + radiance

v = true;

st brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdf
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse( diffuse, N
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Adaptive Sampling

Some pixels need more samples than others.
(to reach a certain variance level)

Adaptive Sampling* aims to estimate which pixels still need work.
Note that reliable variance estimation requires more than

a few samples; adaptive sampling is generally not applicable
to realtime rendering.

*: A Survey of Adaptive Sampling in Realistic Image Synthesis,
M. Sik, 2013.

s 4
< Z»—L o 138>
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Ingredients
Variance-guided Filtering*
kernels : : : : . :
A variance estimate is also useful for steering the filter kernel size:
= A pixel with low variance can use a small kernel
split (which prevents overblurring)
= A pixel with high variance needs a larger kernel
(to include more samples from neighbors)
temporal
SVGF combines bilateral filtering with variance guided kernel sizes and temporal reprojection.
i;jtirra‘ticn ~ d = ’_‘
~adiance = SamplelLight 1 '—:E
2.x + radiance.y + radiance.: » )
:t=b:;::;f = EvaluateDiffuse( L
at3 factor = diffuse * INVPI: <
at weight = Mis2( directPdf, brdfr )
it cosThetaOut = dot( N, L );
E * ((weight * cosThetaOut) _
andom walk - done properl /m}
) : : : : : : : s
; *: Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path-Traced Global £ <
at3'brdf = SampleDiffuse( diffuse, N 4 . . \ﬂ :7
[llumination. Schied et al., 2017. = %
pdf; . N4
\ = E * brdf * (dot( N, R ) / pdf); L] o138

-ion = true:
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Ingredients

kernels

split

at Tr

.
-
=
non
(=]

temporal

efl * E * diffuse

survive = valaxdaptive

estimation - doing
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~adiance = SampleLight( &ra
2.x + radiance.y + radiance.z

:t=blt‘;:':;f = EvaluateDiffuse( L

e fctor - aiiee - vn - https://studenttheses.uu.nl/handle/20.500.12932/29727
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / direc

D
andom walk - done properly ] m

rive)

at3 brdf = SampleDiffuse( diffuse, N
irvive;

pdf; 2

1 = E * brdf * (dot( N, R ) / pdf); Ny |
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Ingredients

kernels

split

J temporal

.adaptive

survive =

estimation - do

if;

“adiance = SampleLight( &rand
a5+ Fagd y + radiance.z

v = tru

it brdfl aluateDiffuse( L, !

at3 factor = fuse * INVPI: .
at wei 2( E Tz - K
at cos = d W r)ling

E * ((weight * cosThetaOut) / directF

andom walk - done properly, clos
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl

irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Machine Learning

Neural networks can be used to filter path tracing noise.

E.g., by learning optimal filter parameters:
A Machine Learning Approach for Filtering Monte Carlo Noise. Kalantari et al.,, 2015.

o t" J
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Ingredients

Machine Learning

kernels  poinforcement Learning can be used to importance sample based on experience.
) o E.g., by learning light transport while rendering:
split Learning Light Transport the Reinforced Way. Dahm & Keller, 2017.

1AXDE!

3 (..
survive = valada.ptlve ”»
estimation - doing it
if; v
"adiance = SampleLight( &rand i
a5+ Fagd y + radiance.z
v = tru
it brdf aluateDiffuse( L, !
at3 factor = fuse * INVPI: .
it wei 2( E Tz - K
+ oot - AEATTINEG

E * ((weight * cosThetaOut) / directF
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rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
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Ingredients

Machine Learning

= kernels Reinforcement Learning can be used to importance sample based on experience.
)) Reinforcement Learning for rendering is often referred to as path guiding:
e, split Path Guiding in Production. Vorba et al., 2019 (SIGGRAPH 2019 course).

it Tr =1 - (RO 4

estimation - doing it prop=rl

if;

-adiance = SampleLight( &rand, 1, -
2.X + g y + radiance.z)

FRLINg

E * ((weight * cosThetaOut) / directPd?

fuse * INVPI;
it we: 2( E
it cos = di

andom walk - done properly, closely foll
rive)

: -
1t3 brdf = SampleDiffuse( diffuse, N, ri, -
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
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Ingredients

Machine Learning

kernels And finally: convolutional neural networks.
Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings. Disney / Pixar,
split University of California: Bako et al., 2019.

Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising
Autoencoder. NVIDIA, several universities: Chaitanya et al., 2017.

J temporal

(a) Ispp noisy input (b) Edge-avoiding wavelets  (¢) SURE-based filter (d) Recurrent autoencoder (e) Reference
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it brdf aluateDiffuse( L
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E * ((weight * cosThetaOut) / di
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pdf;
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at Tr = 1
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Future Work
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Digest
Filtering, practical

First of all, provide a high-quality render:

= Few samples can still be HQ samples

= Many filters get more expensive with high spp counts = spend more time per sample
e =1 Prepare your input:
'r) R = (D
e = Separate albedo and illumination
ind, e = Separate direct and indirect light
TI = Suppress outliers
efl * E * diffuse
= true; ( =
' = Supply ‘feature buffers’ for the bilateral kernels
I » Use a pinhole camera - postpone AA / DOF
survive = SurvivalProbabil .
estination - doin = Reproject; go temporal.
~adiance = SampleLight( &rand
2.x + radiance.y + radiance.z
- true; Filter:

it brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI;
it weight = Mis2( directPdf, brdfr

& gt - comensone o™ Some form of bilateral
S o progerly, <] = Steer kernel size with variance estimation

= [deally: sample-based; pixel-based if this is too slow

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:
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Digest

Filtering, open problems

Not easy to do:

DOF AA
Transparency

- Considerations for real-time:

| |
1t = nt ]
352% =
), N
)
at a = nt
'r) R = (D
= * diffuse:
= true; | ]
1 + refr)) && (dept =
), N ); u
efl * E * diffuse;
= true;

|
AAXDEPTH)

survive = SurvivalProbabilit
estimation - doing it

if;

“adiance = SampleLight( &rand
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfpds
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut) / directF

andom walk - done properly, cl
rive)

3t3 brdf = SampleDiffuse( diffuse, N, rl
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);

-ion = true:

Mind temporal stability

Don’t make it too crisp

Make some (uniform) noise a feature
Consider using DLSS
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» Camera parameters

name : unnamed |
Ri255  G:255 B:255 [ cotor

R: @ G @ B: @ absorption
. 0. 008 metallic
[ | 8. 000 subsurface
;;A, | | 8, 000 specular
(depth o
. 0,000 roughness
i:_i::iden N l 0,000 specularTin
)s2t = 1.67 . 0, 000 anisotropic
¥, N ); .
;; ; [ | 0,000 sheen |
. 0,000 sheenTint I
st ‘a = nt - nc, b m— |
it Tr =1 - (RO + (1 . Q. 0o clearcoat
R R=DS nat - N . 8. 080 clearcoatGl |
—
= * diffuse; | | 8,000 transmissio |
= true; : ]
l o, 000 eta (1/ior)

=fl + refr)) && (depth

, N );
~efl * E * diffuse;
= true;

{AXDEPTH)

survive = SurvivalProbability o
estimation - doing it propsrl

if;

-adiance = SampleLight( &rand, 1
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v = true;

3t brdfPdf = EvaluateDiffuse( L, N |
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E * ((weight * cosThetaOut) / direc
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rive)
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at3 brdf = SampleDiffuse( diffuse, N, r1, -2 ©
rvive;

pdf;
1 = E * brdf * (dot( N, R ) / pdf):
-i0n = true:




at a = nt
at Tr = 1
'r) R = (D

= * diffuse:
= true;

2l + refr)) &2

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doing it

if;

-adiance = Samplelight( &ranc
2.x + radiance.y + radiance.z

v = true;

it brdfPdf = EvaluateDiffuse( L

at3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut) / direc

andom walk - done properly,
rive)
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END of “Filtering”

next lecture: “Bits & Pieces, Exam Training”
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Exam Questions
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E * ((weight * cosThetaOut) / direc

andom walk - done properly, cl
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3t3 brdf = SampleDiffuse( diffuse, N, rl
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pdf;

1 = E * brdf * (dot( N, R ) / pdf);
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A few questions on Importance Sampling

a)

b)
©)

d)

Next Event Estimation can be considered a form of
Importance Sampling. How?

Is Russian Roulette also a form of Importance Sampling?

Explain why the following path termination probability
for Russian Roulette is a poor choice:

r+g+b
3
Write down a better one. Motivate your choice.

p:

‘Without Russian Roulette, a path tracer cannot be
unbiased.’. Is this statement true or false? Why?

Describe a scene for which the use of Next Event
Estimation increases variance.
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3)

at a = nt
at Tr = 1
r) R = (D

= * diffuse
= true;

ofl + refr)) &2

), N )
efl * E * diffuse
= true;

AAXDEPTH)

survive = SurvivalProbabil
estimation - doi

if;

~adiance = SampleLight( &ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
it cosThetaOut = dot( N, L );

E * ((weight * cosThetaOut)
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rive)
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pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

Sampling:
a) How does stratification reduce variance?
b) How does blue noise reduce variance?

c) Whatis, in the context of stratification, the ‘curse of
dimensionality’?



Exam Questions

), N );

On GPU ray tracing:

a) In wavefront path tracing, we split up rendering over multiple

kernels. Why?

b) List the kernels for wavefront path tracing, and describe their

function.

c) Why did early GPU ray tracers try to work without a stack?

d) In the paper “Understanding the Efficiency of Ray Traversal on

efl * E * diffuse

= true;

AAXDEPTH)

GPUs” Aila and Laine conclude that memory bandwidth is not
the main bottleneck in GPU ray tracing. What is the bottleneck?

" Multithreaded programming
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at brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI:
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E * ((weight * cosThetaOut)

andom walk - done properl
rive)
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pdf;
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1 = E * brdf * (dot( N, R ) / pdf):
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What Do You Actually Need To Read?

G e B

The slides

Aila & Laine, “Understanding...”

The two blog posts about probability theory

The first six blog post about BVHs (basics, SAH, binning, refitting, top-level)
“Spatiotemporal reservoir resampling for real-time...” (ReSTIR paper)

“Megakernels Considered Harmfull: Wavefront Path Tracing on GPUs.”
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A few questions on BRDFs:

a) In microfacet BRDFs, we make extensive use
of a ‘halfway vector’. What is this vector, and
what is it used for?

b) The Phong illumination model, as used in
OpenGL, is not physically plausible, for a
number of reasons. Name at least two.

c) What is Total Internal Reflection?

SCHWARZENEGGER

Get ready for the ride
of your life.

TOTAL
INTERNAL
RERLECTION
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Exam Questions

Probability Densities

We set up an experiment where we roll two dice. The first die is a regular six-sided
one, with numbers 1...6. The second die is also six-sided, but has numbers 10...60.

ofl + refr)) &2
), N );

efl * E * diffuse
= true;

AAXDEPTH)

v = true;

at brdfPdf = Ev
at3 factor = di
at weight = Mis
3t cosThetaOut = °
E * ((weight * cos

andom walk - done properly
rive)

3t3 brdf = SampleDiffuse( diffuse, N, ri
irvive;
pdf;

R

brdf * (dot( N, R ) / pdf);:
-10n rye*

+ru

For the experiment, we pick up a random die and roll it.

What is the expected value of this experiment?

Explain how we can optimally use importance sampling for this experiment
to reduce variance.

What are the requirements for a valid pdf?
Write down the pdf used in 4b and show that it is indeed correct.

When using Next Event Estimation, we sample the direct illumination with
an explicit light ray. The energy that this sample yields is scaled by

1/pdf (X), as we normally do with Monte Carlo sampling. Here, pdf (X) is
the light pdf. Write down this pdf and show that its integral over the
hemisphere equals 1.
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at a = nt
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estimation - do

if;

~adiance = SampleLight( &ra
2.x + radiance.y + radiance.:

v = true;

it brdfPdf = EvaluateDiffuse( L
at3 factor = diffuse * INVPI;

at weight = Mis2( directPdf, brdfr
st cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut)

andom walk - done properly
rive)

5t3 brdf = SampleDiffuse( diffuse,
irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf);
-ion = true:

When using Next Event Estimation in a path tracer, implicit light
connections do not contribute energy to the path.

a) What is an ‘implicit light connection’?

b) Why do these connections not contribute energy to the
path?

c) When sampling VPLs, are the connections implicit or
explicit?

R YT \8 S
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at a
it Tr = 1
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= true;
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\AXDEPTH)

survive = SurvivalProbabi
estimation - d

if;
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st brdfPdf = EvaluateDiffuse
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at weight = Mis2( directPdf, brdf
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pdf;

1 = E * brdf * (dot( N, R ) / pdf):

-ion = true:

On Acceleration Structures:

a)
b)

c)

d)

Explain how BVH construction is similar to QuickSort.
What is agglomerative clustering?

Explain how a kD-tree can be traversed without using a
stack, without adding data to the nodes (so, no ropes, no
short stack).

Can the same approach be used to traverse a BVH?

What is the maximum size, in (actually used) nodes, for
a BVH over N primitives, and why?



Exam Questions

After reading the probability tutorial, answer these:
a) What is a definite integral?

b) What do we mean by an analytical solution?

c) How is the Riemann sum defined (mathematically)?

d) What is ‘univariate’?

e e) What is ‘aliasing’?

ik f) Define, in your own words, ‘expected value’

T g) What is ‘deviation’ in the context of probability theory?
AXDEPTH)

survive = SurvivalProba

esti

T And, finally:
>.x + radiance.y + radianc
g When using importance sampling, we assume that for N = oo,
t3 f?ctor = (.iiffus% ; Ihvii J N N
S b—ax"f(X) b-—a Z i b )
e vl - done prn N Zip(X) N - =
= =1
'i,‘g;:‘ff Ty Provide one example for which this is not true.
pdf;

1 = E * brdf * (dot( N, R ) / pdf);:
-ion = true:
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3t3 factor = diffuse * INVPI;

it weight = Mis2( directPdf, brdfPdf |
at cosThetaOut = dot( N, L );

E * ((weight * cosThetaout) / dicectris An exam can be seen as a Monte-Carlo process. Explain why.
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rive)
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irvive;

pdf;

1 = E * brdf * (dot( N, R ) / pdf):

-i0n = true:




Exam Questions

at a
it Tr = 1
r) R = (D

= * diffuse
= true;

fl + refr)) &

), N )
efl * E * diffuse
= true;

\AXDEPTH)

survive = SurvivalProbabi
estimation - d

if;

"adiance = Samplelight

2.x + radiance.y + radiance

v = true;

st brdfPdf = EvaluateDiffuse

at3 factor = diffuse * INVPI:

at weight = Mis2( directPdf, brdf
at cosThetaOut = dot( N, L ):

E * ((weight * cosThetaOut)

andom walk - done properl
rive)

3t3 brdf = SampleDiffuse( diffuse, N

irvive;

pdf;
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Acceleration Structures, Part 2:

a)

b)

d)

Why do we use the area of a BVH node rather than its
volume in the surface area heuristic?

The surface area heuristic is evaluated in a greedy
manner. What does this mean? What are the
consequences?

Give an example of an animation for which refitting
would be suitable, and one for which it isn’t suitable.
Provide explanation in both cases.

How does ray packet traversal reduce bandwidth
requirements of the ray tracing algorithm?
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1t = nt
352t = 1
3o N EYS

; Jacco Bikker - November 2020 - February 2021

it ‘a = nt - nc
at Tr 1 - (RO
r) R (D nnt

= * diffuse:

THE END (for now)
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